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Abstract. The implementation of a new Arctic regional coupled sea ice-ocean-atmosphere model (ArcIOAM) and its

preliminary results in the year of 2012 are presented in this paper. A newly developed coupler, C-Coupler2 (the Community

Coupler 2), is used to couple the Arctic sea ice-oceanic configuration of the MITgcm (Massachusetts Institute of Technology

general circulation model) with the Arctic atmospheric configuration of the Polar WRF (Weather Research and Forecasting)15
model. ArcIOAM is demonstrated with focus on seasonal simulation of the Arctic sea ice and ocean state in the year of 2012.

The results obtained by ArcIOAM, along with the experiment of one-way coupling strategy, are compared with available

observational data and reanalysis products. From the comparison, results obtained from two experiments both realistically

capture the sea ice and oceanic variables in the Arctic region over a 1-year simulation period. The two-way coupled model

has better performance in terms of sea ice extent, concentration, thickness and SST, especially in summer. This indicates that20
sea ice-ocean-atmosphere interaction takes a crucial role in controlling Arctic summertime sea ice distribution. The coupled

model and documentation are available at https://doi.org/10.5281/zenodo.3742692 (last access: 9 June 2020), and the source

code is maintained at https://github.com/cdmpbp123/Coupled_Atm_Ice_Oce (last access: 7 April 2020).

1 Introduction

It has been widely recognized that coupling between different earth system components (ocean, atmosphere, sea ice, and25
land) could provide improved forecasts of oceanic and atmospheric states on various timescales (Neelin et al., 1994). As an

essential component in climate system, sea ice plays a crucial role in global energy and water budget, and has a substantial

impact on local and remote atmospheric and oceanic circulations. In polar region, strong interactions between different

interfaces disturb sea ice motion and affect sea ice growth-melt process (Jung et al., 2016). Due to the combined features of

solid and fluid, sea ice thermodynamical and dynamical representations in coupled models can be complicated. In recent30
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years, marine traffic through the Arctic are projected to become increasingly feasible as climate change continues, which has

amplified the demand for reliable polar sea ice and marine environmental predictions from synoptic timescale to seasonal

and interannual timescales.

In the past decades, a number of coupled models have been developed with various sea ice prediction capacities on various

time scales (Pellerin et al., 2004;Williams et al., 2018;Chen et al., 2010;Skachko et al., 2019). Climate models, such as those35
involved in the Coupled Model Intercomparison Project Phase 5 (CMIP5), normally incorporate sea ice model in a relatively

simple way, thus can be used to generate long-term sea ice outlook with low confidence on spatial distribution. Recently

within the GODAE (Global Ocean Data Assimilation Experiment) Oceanview community, there is an increasing interest of

using coupled global models to predict sea ice on shorter time scales (Brassington et al., 2015). In Canada, a coupled global

forecasting system is now running operationally at the Canadian Centre for Meteorological and Environmental Prediction40
(Smith et al., 2018), providing global 10 days forecasts of ocean and sea ice states. The ocean-sea ice components of this

system, namely the Global Ice-Ocean Prediction System (GIOPS, runs in real time since March 2014) (Smith et al., 2016),

are based on the Nucleus for European Modelling of the Ocean (NEMO) and the Community Ice CodE (CICE) model. The

GIOPS is coupled to an operational global deterministic medium-range weather forecasting system, namely the Global

Deterministic Prediction System (GDPS) (Smith et al., 2014), which is based on the Global Environmental Multiscale (GEM)45
atmosphere model. In the United Kingdom, Hadley Centre Global Environment Model version 3 (HadGEM3) is under

development and is planning to service in seasonal sea ice prediction (Williams et al., 2018). The HadGEM3 is constitute of

the UK Met Office Unified Model (UKMO UM) atmosphere model (Walters et al., 2011), the Joint UK Land Environment

Simulator land-surface model (Brown et al., 2012), the NEMO model and the CICE model. In the United States, a coupled

global sea ice-ocean-wave-land-atmosphere prediction system providing operational daily predictions out to 10 days and50
weekly predictions out to 30 days is being developed by the US Navy (Brassington et al., 2015;Posey et al., 2015).

Although global coupled models are now being implemented with increased horizontal resolution, higher-resolution regional

coupled models can provide an affordable way to study interactive ocean-atmosphere and sea ice-atmosphere feedback for

polar weather and sea ice process, if properly forced by initial and boundary conditions. On the regional scale, there are also

a few coupled sea ice-ocean-atmosphere model systems for the Arctic climate study and operational sea ice forecast. Schrum55
et al. (2003) introduced a coupled sea ice-ocean-atmosphere model for the North and Baltic Seas. In their work, the regional

atmospheric model REgional MOdel (REMO) was coupled to the HAMburg Shelf Ocean Model (HAMSOM) with a sea ice

module. Pellerin et al. (2004) demonstrated that significant sea ice forecasting improvements occurred when implemented

the two-way coupling between the Gulf of St. Lawrence model with the GEM atmosphere model. Van Pham et al. (2014)

compared basin-scale climate simulation in the regional coupled model COSMO-CLM-NEMO with that in the stand-alone60
COSMO-CLM model for the North and Baltic Seas, and found large improvement in the simulated atmospheric low

boundary temperature. As part of the Canadian Operational Network of Coupled Environmental PredicTion Systems

(CONCEPTS), a fully coupled sea ice-ocean-atmosphere forecasting system for the Gulf of St. Lawrence has been

developed (Faucher et al., 2009) and running operationally at the Canadian Meteorological Centre since June 2011. The new
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model developing plan is to couple a high-resolution (1/12 degree) sea ice-ocean regional model which covering the North65
Atlantic and Arctic Ocean (Dupont et al., 2015) to the regional weather prediction system and wave prediction system of

Environment Canada and provide short-term sea ice-ocean predictions to users.

This work is motivated by the need of a coupled Arctic sea ice-ocean-atmosphere model system for seasonal sea ice

prediction in National Marine Environmental Forecasting Center of China. In coupled model systems, moisture, heat and

momentum are often accomplished through the use of a separate coupling software like OASIS-MCT (Craig et al., 2017) or70
framework like the Earth System Model Framework (ESMF) (DeLuca et al., 2012) which links component models flexibly

and controls the exchange and interpolation of coupling variables. The coupler, which can handle data interpolation and data

transfer between different models and different grids, is the crucial part in the coupled systems. Using the ESMF and the

National United Operational Prediction Capability (NUOPC), Sun et al. (2019) introduced a regional ocean-atmosphere

coupled model covering the Red Sea based on the Massachusetts Institute of Technology general circulation model75
(MITgcm) (Marshall et al., 1997) and the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008).

In our study, we use a newly developed efficient coupling framework, the Community Coupler 2 (C-Coupler 2) (Liu et al.,

2018), to couple the Arctic sea ice-oceanic configuration of the MITgcm (Nguyen et al., 2011;Liang and Losch, 2018) with

the Arctic atmospheric configuration of the Polar WRF model (Hines and Bromwich, 2008) model. By coupling the Polar

WRF and the MITgcm for the first time in Arctic region, to this end, a series of specific procedures including data80
interpolation between different grids and relaxation algorithm in specific areas are developed. After implementing ArcIOAM,

we run seasonal simulation of Arctic sea ice and ocean state in 2012. The simulated variables of the Arctic ocean and sea ice

are examined and validated against available observational data and reanalysis products. To evaluate the role of sea ice-

ocean-atmosphere interaction in Arctic sea ice seasonal cycle, we compare the simulation result of the two-way coupling

experiment with that of the one-way coupling experiment in which the coupling variables are only transmitted from the Polar85
WRF to the MITgcm.

The paper is organized as follows. The description of the component models and coupling strategy are detailed in Section 2.

Section 3 introduces the design of coupling experiments. Section 4 discusses the preliminary results in the validation test.

The last section concludes the paper and presents an outlook for future work.

2 Model Description90

2.1 The Oceanic and Sea Ice Component Model

The ocean and sea ice component of ArcIOAM is an Arctic configuration of the MITgcm (Nguyen et al., 2011;Liang and

Losch, 2018;Liang et al., 2019). The model has an average horizontal resolution of 18 km and covers the whole Arctic

Ocean with open boundaries close to 55 °N in both the Atlantic and Pacific sectors (Losch et al., 2010). The ocean model

includes 420x384 horizontal grid points and 50 vertical model layers based on Arakawa C grid and Z coordinates. The ocean95
model uses curvilinear coordinates and the model grid is locally orthogonal. Vertical resolution of the ocean model layers
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increases from 10 m near the surface to 456 m near the bottom. The K-profile parameterization (KPP) (Large et al., 1994) is

used as the vertical mixing scheme. Time step is 1200 seconds.

The sea ice model shares the same horizontal grid with the ocean model and divides each model grid into two parts: ice and

open ocean. In the open ocean area, ocean-atmosphere heat and momentum fluxes are calculated following the standard bulk100
formula (Doney et al., 1998). In the ice-covered area, the ice surface and bottom heat and momentum fluxes are calculated

according to viscous-plastic dynamics and zero-layer thermodynamics (Hibler, 1980;Semtner, 1976). The so-called zero-

layer thermodynamic model assumes one-layer ice underneath one-layer snow and ice does not store heat, therefore tends to

exaggerate the seasonal variability in ice thickness. Snow modifies ice surface albedo and conductivity. If enough snow

accumulates on top of the ice, its weight submerges the ice and the snow is flooded.105

2.2 The Atmospheric Component Model

The atmospheric component of ArcIOAM is based on the Arctic configuration of the Polar WRF (Bromwich et al.,

2013;Hines and Bromwich, 2008) model, which is an optimized version of the WRF model (Skamarock et al., 2008) for use

in polar region. The Polar WRF is developed and maintained by the Polar Meteorology Group at the Byrd Polar and Climate

Research Center of the Ohio State University. In the Arctic configuration of the Polar WRF model, modifications for polar110
environments primarily encompass the land surface model and sea ice to adapt to the particular conditions in Arctic Regions.

Two key modifications for the Polar WRF are optimization of surface energy balance and heat transfer for the Noah land

surface model over sea ice and permanent ice surfaces, and a fix to allow specified sea ice quantities and the land mask

associated with sea ice to update during a simulation. These modifications improve model performance over the pan-Arctic

for short-term forecasts.115
The Arctic configuration of the Polar WRF model has been tested and evaluated by a set of simulations over several key

surface categories, including large permanent ice sheets with the Greenland/North Atlantic grid and Arctic land (Hines et al.,

2011;Hines and Bromwich, 2008) and the production of the Arctic System Reanalysis (ASR) (Bromwich et al., 2010). In this

study, the Polar WRF model covers the Arctic regions with a horizontal resolution of 27 km. The model has 306x306

horizontal grid points and 60 vertical layers. The prognostic equations in the Polar WRF model are solved with a time step of120
120 seconds. The Polar WRF model employed physics options that included the Mellor Yamada-Janjic boundary layer

scheme in conjunction with the Janjic-Eta Monin Obukhov surface layer scheme (Janjić, 2002), the WRF single-moment 6-

class microphysics scheme for microphysics, the Grell-Devenyi scheme for clouds (Grell and Dévényi, 2002), and the new

version of the rapid radiative transfer model for both shortwave and longwave radiation.

2.3 The Coupler Component Model125

We use the C-Coupler 2 to couple the MITgcm and the Polar WRF model. The C-Coupler family was initiated from 2010 in

China. The first version (C-Coupler1) includes features such as flexible coupling configuration and 3-D coupling capability

(Liu et al., 2014). Two coupled models have been built using the C-Coupler1. The first is a coupled climate system model
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version FGOALS-gc at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The FGOALS-gc can achieve

exactly the same (bitwise identical) simulation results as same model components with different coupler the CPL6 (Liu et al.,130
2014). The second is a regional coupled model FIO-AOW (Zhao et al., 2017) which includes an atmosphere model WRF, an

ocean model POM (Princeton Ocean Model) , and a wave model MASNUM (Yang et al., 2005).

The second version of the C-Coupler family, the C-Coupler 2 (Liu et al., 2018), is equipped with many advanced functions,

including 1) a common, flexible, user-friendly coupling configuration interface, 2) the capability of coupling within one

executable or the same subset of Message Passing Interface (MPI) processes, 3) flexible and automatic coupling procedure135
generation for any subset of component models, 4) dynamic 3-D coupling that enables convenient coupling of field on 3-D

grids with time-evolving vertical coordinate values, 5) non-blocking data transfer, 6) facilitation for model nesting, 7)

facilitation for increment coupling and 8) adaptive restart capability (Liu et al., 2018).

2.4 Coupling Strategy

The C-Coupler2 is employed as a library to achieve the two-way parallel coupling between the Polar WRF and the MITgcm140
(Figure 1). The coupling interval is set to 20 minutes. At each coupling time step, the MITgcm is executed when the Polar

WRF model is completed and vice versa. During coupling execution, the MITgcm sends SST, sea ice concentration, sea ice

thickness, snow depth and ice surface albedo to the coupler, and these coupling variables are used directly as the bottom

boundary conditions in the Polar WRF model. The Polar WRF model sends the atmospheric bottom boundary variables to

the coupler, including downward longwave radiation, downward shortwave radiation, 10-m wind speed, 2-m air temperature,145
2-m air specific humidity, and precipitation. The MITgcm uses these atmospheric variables to compute the open ocean and

ice surface heat, freshwater and momentum forcing.

Model domain of the MITgcm and the Polar WRF model are shown in Figure 2a. As the model domain and grid of the Polar

WRF and the MITgcm are generally different, several important procedures have been carried out in conducting our coupled

system:150
1) The model domain of the Polar WRF is larger than that of the MITgcm, there is a non-overlapped area between the

MITgcm domain and the Polar WRF domain. Besides, the MITgcm model only produces surface variables over ocean, and

the Polar WRF model also needs bottom boundary conditions over land. Thus, the coupling variables received by the Polar

WRF model need to be concatenated by value in the non-overlapped area and in the land area from an external forcing file,

and value in the overlapped ocean area from the MITgcm model together. To diminish the abrupt value changes from two155
sources, a simple linear relax zone is designed near the open boundaries of the MITgcm model in both the Atlantic and

Pacific sectors (Figure 2b). The coupling variables (VARrecbyWRF) received by the Polar WRF model can be expressed as:

ݕ�ܾ�ܿ�݁���� � th� ݕ�ܾ�ܿ�݁������ � ����݁㌳䁠݁�㌳ (1)

where α is relaxation coefficient, which is equal to 0 in the overlapped ocean area away from the MITgcm open boundaries,

and equal to 1 in the land area and in the non-overlapped area away from the MITgcm open boundaries. While in the relax160
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zone, α increases from 0 to 1 linearly from the overlapped side to the non-overlapped side. VARsedbyMIT is the coupling

variables which are send by the MITgcm model. VARextern is the bottom boundary variables of the Polar WRF model which

are read from external forcing file.

2) The MITgcm model uses curvilinear grid whose horizontal resolution is variable. The Polar WRF model uses polar

stereographic grid whose horizontal resolution is constant. Because the Polar WRF domain covers the MITgcm domain, the165
coupling interpolation from the Polar WRF grid to the MITgcm grid is straightforward, but the coupling interpolation from

the MITgcm grid to the Polar WRF grid creates irregularities if the detailed geographic information of the MITgcm model

grid is not specified. Meanwhile the MITgcm model is based on Arakawa C grid, geographic information of each grid cell is

given at the center of the grid cell and at the four centers of the four boundaries of the grid cell. To correctly handle data

interpolation between the different grids, the C-Coupler2 automatically calculates geographic information at the four corners170
of each grid cell (Figure 3) during the coupling initialization process. Take the left bottom corner (v1) of grid cell (i, j) as an

example, the longitude (xv1) and latitude (yv1) are calculated as follows:

㌳�h �
㌳��㌳䁠 ��h,� �㌳��㌳䁠t�,���㌳��㌳䁠t��h,��h��㌳��㌳䁠t�,��h�

4
(2)

��h �
�㌳䁠�� ��h,� ��㌳䁠t�,��h�����㌳䁠t��h,��h�����,��㌳䁠t���

4
(3)

where the subscripts point(i-1, j), point(i, j), point(i-1, j-1) and point(i, j-1) denote the four centers of the four grid cells175
around the corner. In the following model execution or model restarting process, the C-Coupler2 uses the corner geographic

information of the MITgcm grid to constrain interpolation domain from the MITgcm model to the Polar WRF model.

3 Numerical Experiments

The Arctic coupled model will be used to conduct seasonal sea ice prediction in our future plan. As a starting point, we need

to evaluate the Arctic coupled model performance on seasonal timescale without any data assimilation. In this work, we180
perform the coupled model free simulations in the year of 2012 with special focuses on the summertime. With more open

ocean area be exposed to atmosphere, we expect that sea ice-ocean-atmosphere interaction processes are relatively more

intensified in the summertime than that in the wintertime. In the Arctic region, demands of seasonal prediction for sea ice

and ocean are also strong in summertime when more commercial and scientific activities of Arctic shipping occur.

Additionally, the year of 2012 is chosen because an unusually strong storm formed off the coast of Alaska on 5 August 2012,185
and tracked into the center of the Arctic Basin where it lingered for several days and generated stronger sea ice-ocean-

atmosphere interaction (Simmonds and Rudeva, 2012). The main aim of this paper is to assess the sea ice and ocean

simulation abilities of the coupled system. For this reason, less attention will be paid on the atmosphere simulation. Future

work will emphasize atmospheric simulation and seasonal sea ice prediction skill with available observations be assimilated.

Two experiments using different coupling strategy are performed in this study. The first experiment which denoted by190
OCNCPL is a two-way coupled simulation that the MITgcm receives the coupled variables from the Polar WRF, and the
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Polar WRF also receives the coupled variables from the MITgcm. The second experiment which denoted by OCNDYN is a

one-way coupled simulation that the MITgcm only receives the coupled variables from the Polar WRF, but without sending

the coupled variables back to the Polar WRF. The model state deviation between the two runs represents the influences of

sea ice-ocean-atmosphere interaction on the Arctic Ocean and sea ice.195
The atmospheric specific initial and lateral boundary conditions, as well as bottom boundary conditions in the external

forcing file, are derived from the 6-hourly National Centers for Environmental Prediction (NCEP) Climate Forecast System

Reanalysis (CFSR) data (Saha et al., 2010). The oceanic monthly lateral boundary condition of the coupled model is derived

from the Estimating the Circulation and Climate of the Ocean phase Ⅱ (ECCO2): high-resolution global-ocean and sea ice

data synthesis (Menemenlis et al., 2008), including potential temperature, salinity, current, and sea surface elevation. The200
discrepancy of atmosphere and ocean boundary condition is less of an issue since the ocean does not vary much on shorter

time scale and the ice is far away from the lateral boundary. The ocean and sea ice initial condition on 1 January 2012 are

derived from a stand-alone MITgcm simulation. The stand-alone MITgcm simulation was initialized from climatological

temperature and salinity field derived from the World Ocean Atlas 2005 (WOA05) (Locarnini et al., 2006;Antonov et al.,

2006) and forced by the 3-hourly Japanese 55-year Reanalysis data (JRA55) (Harada et al., 2016;Kobayashi et al., 2015)205
from 1979 to 2011 in our previous study (Liang and Losch, 2018). After 33-year integration, the ocean and sea ice initial

condition on 1 January 2012 used in the coupled model are retrieved from a quasi-equilibrium ocean-sea ice evolution period.

River runoff is based on the Arctic Runoff Data Base (Nguyen et al., 2011). The coupled model states are outputted on daily

basis and used in our analysis.

4 Preliminary Results210

4.1 Sea Ice Extent and Concentration

The lowest Arctic sea ice extent in the satellite-observed era occurred in the summer of 2012 (Francis, 2013). According to

sea ice extent record derived from the Multisensor Analyzed Sea Ice Extent-North Hemisphere (MASIE-NH) (NSIDC,

2010), obtained from http://nsidc.org/data/masie/, in the year of 2012 Arctic sea ice extent grows to maximum value of 14.5

million km2 in March and drops to minimum value of 3.5 million km2 in September (Figure 4a). The MASIE-NH data is215
provided daily by the National Ice Center Interactive Multisensor Snow and Ice Mapping System with a spatial resolution of

4 km. Both the OCNCPL and OCNDYN run simulate lower sea ice extent than the observations by a bias of 1-2 million km2

(Figure 4a) except the first half month of January. Because sea ice initial field on 1 January 2012 is derived from a stand-

alone MITgcm simulation which is forced by the JRA55 data, the change of atmospheric forcing data from the JRA55 to the

NCEP CFSR induces a model state adjustment period which lasts about half month. Comparing the sea ice extent evolution220
of the OCNCPL and OCNDYN run, it seems that sea ice-ocean-atmosphere interaction generates quite slight sea ice extent

change, but based on our following analysis related to sea ice spatial distribution, sea ice-ocean-atmosphere interaction plays

a decisive role in summertime sea ice spatial distribution.
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Figure 4b shows the modeled and observed sea ice extent anomaly. After the model state adjustment period, both the

amplitudes of sea ice extent seasonal cycle of the two runs are close to the observations. The sea ice extent bias between the225
model states and the observations likely arise from the sea ice model systematic bias which is induced by the choice of sea

ice and snow albedo parameters in the two runs. Nguyen et al. (2011) pointed out that optimized parameters of sea ice and

snow albedo depend on selected atmospheric forcing in the MITgcm. In the MITgcm sea ice model, the actual surface

albedo changes with time and is a function of four foundational albedo parameters (dry ice, dry snow, wet ice, wet snow), as

well as ice surface temperature and snow depth. The sea ice model systematic bias could be reduced by rationally amplifying230
albedo parameters or involving a sea ice data assimilation module (Liang et al., 2019) when conducting seasonal sea ice

prediction system.

We compare the modeled sea ice concentration with the observations derived from the EUMETSAT Ocean and Sea Ice

Satellite Application Facility (OSISAF) (Eastwood et al., 2011); obtained from http://osisaf.met.no/; product identifier: OSI-

409. The observations are reprocessed daily sea ice concentration fields which are retrieved from the Scanning Multichannel235
Microwave Radiometer/Special Sensor Microwave Imager (SMMR/SSMI) data with a spatial resolution of 10 km. Figure 4c

shows the root mean square error (RMSE) evolution of the modeled sea ice concentration with respect to the OSISAF data.

The Arctic basin is almost fully covered by sea ice from January to May, thus the two experiments do not produce

substantial sea ice concentration differences. Along with more open ocean are exposed to atmosphere, from June to

September the sea ice concentration RMSE of the OCNCPL run is significantly lower than that of the OCNDYN run. This240
result indicates that sea ice-ocean-atmosphere interaction takes a crucial role in controlling Arctic summertime sea ice

distribution.

To further clarify sea ice spatial distribution, we show the modeled and observed monthly mean sea ice concentration in July,

August and September (Figure 5). In July, the modeled sea ice extent of the OCNCPL run is similar to that of the OCNDYN

run, but the modeled sea ice concentration of the OCNCPL run is much lower than that of the OCNDYN run in thick245
multiyear ice zone near the Canadian Arctic Archipelago and in the southern Beaufort Sea (Figure 5a and Figure 5b). The

satellite observations show that the OCNCPL run still overestimates sea ice concentration in the southern Beaufort Sea and

the Laptev Sea (Figure 5c). In August, the modeled sea ice melts quickly in the Eurasian marginal seas in the two runs.

Compared with the satellite observations (Figure 5f), the OCNDYN run overestimates sea ice concentration in the southern

Beaufort Sea while underestimates sea ice concentration in the center Arctic basin (Figure 5e). The OCNCPL run simulates250
similar sea ice extent to the satellite observations but with lower concentration in the center Arctic basin (Figure 5d). In

September, the modeled sea ice in the marginal sea ice zone melts out in the two runs. Although the two runs simulate

almost same sea ice extent, due to rational representation of sea ice-ocean-atmosphere interaction in the OCNCPL run, the

modeled sea ice distribution of the OCNCPL run is closer to the observations (Figure 5g and Figure 5i).
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4.2 Sea Ice Volume and Thickness255

At current stage, satellite sea ice thickness data is not available in melting seasons from May to September. We compare the

modeled sea ice volume with that from a widely used sea ice volume data source (Figure 6a), the Pan-Arctic Ice Ocean

Modeling and Assimilation System (PIOMAS) developed at the Applied Physics Laboratory of the University of

Washington (Zhang and Rothrock, 2003). The PIOMAS assimilates sea ice concentration data from the National Snow and

Ice Data Center (NSIDC) and SST data from NCEP/NCAR Reanalysis. Both the two runs produce less sea ice volume than260
the PIOMAS data almost in a whole year of 2012, partly resulting from that our model underestimates sea ice extent (Figure

4a) without assimilating any observation. However, it is notable that the sea ice volume evolution of the OCNCPL run is

closer to the PIOMAS data at the end of 2012.

Satellite sea ice thickness observations are usually retrieved from either ice surface brightness temperature or radar altimetric

measurement of sea ice freeboard. We use three kinds of satellite sea ice thickness data to validate our model results (Figure265
6b and Figure 6c). Daily sea ice thickness observations provided by the University of Hamburg are derived from the Soil

Moisture Ocean Salinity (SMOS) brightness temperature combined with a sea ice thermodynamic model and a three-layer

radiative transfer model (Kaleschke et al., 2012) obtained from http://icdc.cen.uni-hamburg.de/1/daten/cryosphere/l3c-smos-

sit.html. Weekly sea ice thickness observations provided by the Alfred Wegener Institute, Helmholtz Centre for Polar and

Marine Research are derived from the European Space Agency satellite mission CryoSat-2 radar altimetric data (Ricker et al.,270
2014) obtained from http://data.meereisportal.de/data/cryosat2/version2.0/. The SMOS observations retrieved from satellite

brightness temperature data have promised qualities in marginal sea ice zone where ice thickness is thinner than 1 m (Tian-

Kunze et al., 2014) while the CryoSat-2 observations retrieved from radar altimetric data have higher accuracies in pack sea

ice zone than in marginal sea ice zone (Laxon et al., 2013;Wingham et al., 2006). Taking the spatial complementarity of the

SMOS and CryoSat-2 data into consideration, Ricker et al. (2017) introduced a weekly sea ice thickness product covering275
the entire Arctic, the CS2SMOS sea ice thickness, which is generated by mathematically merging the SMOS sea ice

thickness with the CryoSat-2 sea ice thickness (Ricker et al., 2017) obtained from

https://data.meereisportal.de/data/cs2smos/version1.4/. The CS2SMOS data with observational uncertainty is also added in

the comparison.

The weekly CryoSat-2 data is constitute of several banded sea ice thickness records which collected in one week when polar280
orbital satellite passes the Arctic region. The SMOS data used in this study are those in thin ice (< 1 m) region. Considering

spatial coverage of the observations, we compare spatial-mean sea ice thickness evolution with the CS2SMOS data (Figure

6b). Comparing with the CS2SMOS data, both runs produce rational sea ice thickness evolution from January to April.

However, large sea ice thickness errors between the model and the observations exist in October and November. We

attribute these large errors to the possibly observational uncertainties induced by radar altimetric measurement errors when285
ice surface starts to freeze up. The modeled sea ice in the OCNCPL run is thinner than that in the OCNDYN run, and the sea

ice thickness deviations between the two runs amplify after the summer. Meanwhile the sea ice volume and thickness of the
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OCNCPL run are closer to the PIOMAS data and the CS2SMOS observations at the end of 2012. We speculate that in the

OCNCPL run sea ice-ocean-atmosphere interaction induces reasonable sea ice thickness distribution in the summer of 2012

which preconditions the sea ice thickness evolution in the following freezing season.290
The sea ice thickness RMSEs of the two runs with respect to the three kinds of satellite sea ice thickness data are shown in

Figure 6c. The sea ice thickness RMSE between the OCNCPL run and the SMOS data is smaller than that between the

OCNDYN run and the SMOS data, indicating that sea ice-ocean-atmosphere interaction substantially improves the sea ice

thickness simulation in the marginal sea ice zone in the OCNCPL run. The sea ice thickness RMSEs between model and the

CryoSat-2 data are generally larger than those between model and the CS2SMOS data especially in October and November,295
which is partly due to the large uncertainty of radar altimetric measurement when ice surface starts to freeze up, and partly

due to the low spatial coverage of the CryoSat-2 data.

Normally satellite sea ice thickness data has large uncertainty due to limitation of retrieval algorithm. In situ sea ice

thickness observations with higher accuracy can provide a direct reference for the model. To further evaluate the modeled

sea ice thickness, we compare the time evolution of modeled and observed sea ice thickness at three locations in the Beaufort300
Sea in 2012 (Figure 7). The observations are derived from moored upward-looking sonar (ULS) ice draft data from the

Beaufort Gyre Exploration Project (BGEP) (Proshutinsky et al., 2005); obtained from http://www.whoi.edu/beaufortgyre/.

The ULS samples the ice draft with a precision of 0.1 m (Melling and Riedel, 1995) , and the ice draft can be converted to

ice thickness following the law of hydrostatic equilibrium (Nguyen et al., 2011). Generally speaking, at all three locations in

the Beaufort Sea, when the modeled sea ice is thinner than 1 m, the sea ice thickness evolution improves in the OCNCPL run305
comparing with those in the OCNDYN run. This result further demonstrates that sea ice-ocean-atmosphere interaction plays

an important role in marginal sea ice evolution.

Spatial distributions of monthly mean sea ice thickness in June, September, and December are shown in Figure 8. In June,

almost the whole Arctic basin is still covered by thick ice, large sea ice thickness deviations between the two runs mainly

appear around sea ice edge where sea ice-ocean-atmosphere interaction can impact significant influence on sea ice melting310
rate (Figure 8c). In September, accompanied by the change of sea ice concentration pattern when involving sea ice-ocean-

atmosphere interaction, the modeled sea ice becomes thicker in the central Arctic while thinner in the area near the

Greenland Island and in the southern Beaufort Sea (Figure 8f). As summertime sea ice thickness has strong effect on

preconditioning the following wintertime sea ice thickness (Day et al., 2014), the modeled sea ice of the OCNCPL run is

universally thinner than that of the OCNDYN run in December (Figure 8i).315

4.3 Ocean Temperature and Current

Sea ice states are intimately linked to ocean states, both dynamically and thermodynamically. The modeled spatial

distribution of sea ice concentration in the OCNCPL run exhibits great improvement comparing with the OCNDYN run.

Since sea ice in marginal ice zone is strongly affected by SST through lateral heat transport, we suspect that sea ice-ocean-

atmosphere interaction should impose positive influence on the modeled ocean temperature in the marginal sea ice zone.320
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The modeled SST is validated against the Group for High-Resolution SST Multi-Product Ensemble (GMPE) data (obtained

from http://marine.copernicus.eu/, product identifier: SST_GLO_SST_L4_NRT_OBSERVATIONS_010_005). The GMPE

SST data provided by the UKMO is a reanalysis daily global SST product that computed as the median of a large number of

SST products by various institutes around the world. Each product contributing to the GMPE product uses different

observational data sets or different retrieval algorithms. As a median product of multiproduct ensemble, the GMPE SST data325
greatly reduces observational uncertainties. The SST RMSE of the two runs with respect to the GMPE data from July to

September are shown in Figure 9. We do not show the time evolution of the SST RMSE in whole year because the two

timeseries do not obviously diverge in the other months. In general, the SST RMSE of the OCNCPL run is smaller than that

of the OCNDYN run in the summer of 2012, which means the SST simulation also improves when sea ice-ocean-

atmosphere interaction is allowed in the model. Spatial patterns of modeled and observed SST in July, August and330
September are shown in Figure 10. The GMPE SST data is available in ice-free areas (Figure 10a, Figure 10e and Figure

10i). Comparing with the OCNDYN run, in July and August the modeled ocean surface of the OCNCPL run warms in Fram

Strait, the Barents Sea, the Kara Sea and the Bering Strait while colds in the Baffin Bay, the Greenland Sea and the Laptev

Sea (Figure 10d andFigure 10h). In September strong warming in the OCNCPL run appears in the southern Beaufort Sea

(Figure 10l). These SST modifications induced by sea ice-ocean-atmosphere interaction not only lead to the reduction of the335
modeled ocean surface temperature bias, but also help to maintain a more rational sea ice spatial pattern.

Ocean current observations in the Arctic Ocean are quite sparse, we evaluate the modeled ocean velocity and temperature

with climatological observation generated from the 1998-2003 mooring data in Fram Strait. Under the framework of the

European Union projects Variability of Exchanges In the Northern Seas (VEINS) and Arctic Subarctic Ocean Fluxes - North

(ASOF-N), a series of moorings in Fram Strait had been deployed to record ocean properties since September 1997 to 2004340
(obtained from https://www.whoi.edu/page.do?pid=30914). The observation covers water column from 10 m above the

seabed to about 50 m below the surface. Although the observations were conducted at least one decade earlier than 2012, we

believe that the comparison between the modeled and observed monthly mean value would likely still make sense since the

phase of the Atlantic Multidecadal Oscillation does not reverse between 1995 and 2012. The modeled and observed

northward cross-section velocity and temperature averaged between 5°E and 8°40'E at 78°50'N are listed in Table 1.345
Basically, the observations show that the northward velocity of the West Spitsbergen Current (WSC) increases from July to

September, and the mean temperature of the section of 78°50'N also increases from July to December. It is notable that the

modeled velocity and temperature of the OCNCPL run in Fram Strait are closer to the observations comparing with those of

the OCNDYN run, although there are still large biases of the modeled velocity between the OCNCPL run and the

observations. Vertical temperature distribution in the section averaged between July and September shows that sea ice-350
ocean-atmosphere interaction induces warming of the WSC until 700 m depth accompanied with strong cooling beside the

WSC (Figure 11c). The cross-section velocity deviation between the OCNCPL and OCNDYN run is characterized by

enhanced northward velocity over the whole water column around 0 °E and east of 6 °E, while reduced northward velocity

between them (Figure 11f).
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355

5 Conclusion and Discussion

This paper describes the implementation of an Arctic regional sea ice-ocean-atmosphere coupled model (ArcIOAM). To

connect the component models, a newly developed coupler, C-Coupler2 is implemented to couple the Arctic sea ice-oceanic

configuration of the MITgcm model with the Arctic atmospheric configuration of the Polar WRF model. By coupling the

Polar WRF and the MITgcm for the first time in Arctic region, a series of specific setup including data interpolation between360
different grids and relaxation algorithm in specific areas are designed.

After implementing the new coupled model of ArcIOAM, we demonstrate it on seasonal simulation of the Arctic sea ice and

ocean state in 2012. Results from the two-way coupled simulation (OCNCPL) and the one-way coupled simulation

(OCNDYN) are compared to a wide variety of available observational and reanalysis products. The model state deviation

between two experiments represents the influences of sea ice-ocean-atmosphere interaction on the Arctic Ocean and sea ice.365
From the comparison, results obtained from two experiments both realistically capture the sea ice and oceanic variables in

the Arctic region over a 1-year simulation period. The two-way coupled experiment gives equal or better results compared

with the one-way coupled experiment.

Both the amplitudes of sea ice extent seasonal cycle of the two runs are close to the observations. The spatial distribution of

sea ice concentration in the OCNCPL run is similar to that in the OCNDYN run from January to May. From June to370
September the sea ice concentration RMSE of the OCNCPL run with respect to the observations is significantly lower than

that of the OCNDYN run, indicating that sea ice-ocean-atmosphere interaction takes a crucial role in controlling Arctic

summertime sea ice distribution. The sea ice thickness RMSE of the OCNCPL run with respect to the SMOS data in thin ice

areas is smaller than that of the OCNDYN run. Meanwhile, the evolution of the modeled and observed sea ice thickness at

three locations in the Beaufort Sea show that the modeled sea ice thickness evolution improves in the OCNCPL run when the375
ice is thinner than 1m. This result means that sea ice-ocean-atmosphere interaction is very likely to improve the sea ice

thickness simulation in the marginal sea ice zone when considering feedback of ocean to atmosphere. Based on comparison

with a series of mooring data in Fram Strait, the modeled velocity and temperature in the OCNCPL run are closer to the

observations than those in the OCNDYN run, although large biases of the modeled velocity still exist. Comparing with the

satellite data, the SST obtained in the OCNCPL run is also better than that in the OCNDYN run in summer 2012. Due to380
strong sea ice-ocean-atmosphere interaction in summertime, the two-way coupling strategy.not only improves the sea ice

simulation, but also benefit the modeled ocean states.

It is noticed that the simulation presented in this paper only covers one year, more seasonal scale simulations in different

years should be carried out to further assess the coupled model. However, given the encouraging results in 2012, this new

developed Arctic regional coupled model exhibits its potential capacity of seasonal sea ice prediction and provides a reliable385
basis for investigating both thermodynamic and dynamic process and forecasting applications in the Arctic sea ice scope.
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Meanwhile, bias in the modeled sea ice extent and summertime sea ice thickness still exist, although satellite sea thickness

data normally has large uncertainty in summertime, which partly contributes to the large sea ice thickness bias in October-

November between the model and CS2SMOS data (Figure 6b), the foundational sea ice albedo parameters in our current

model configuration seem to be underestimated, which allows more heat into the ice and causes thinner sea ice thickness, as390
well as lower sea ice extent. The choice of sea ice albedo parameters also contributes to the large sea ice thickness bias in

October-November between the model and CS2SMOS data. On the way to operational seasonal sea ice prediction, the model

physics and model uncertainty representation in the coupled model can be enhanced using advanced techniques, such as

stochastic physics parameterizations and ensemble approaches. The regional coupled forecasting system also can be

improved by involving data assimilation capabilities for initializing the forecasts. Future work will involve exploring these395
and other aspects for a regional coupled modeling system suited for forecasting and process understanding.

Code and data availability. The latest version and future updates of the source code, user guide, and examples can be

downloaded from https://github.com/cdmpbp123/Coupled_Atm_Ice_Oce (last access: 7 April 2020). The current version400

of this coupled model (ArcIOAM v1.0) used to produce the results in this paper can be accessed via

https://doi.org/10.5281/zenodo.3742692.
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Figure 1: Coupling strategy of the Polar WRF-MITgcm coupled model system.

590

Figure 2: (a) Model domain of the MITgcm and the Polar WRF model. The red and black lines denote the boundaries of the Polar
WRF and the MITgcm model, respectively. (b) Relaxation coefficient for the external forcing file of the Polar WRF bottom
boundary conditions.
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Figure 3: Schematic diagram of calculating the corner geographic information of the MITgcm grid.595
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Figure 4: Time series of (a) sea ice extent, (b) sea ice extent anomaly, and (c) root mean square error (RMSE) of modeled sea ice
concentration with respect to the OSISAF observation in 2012. The black, red, and blue lines in (a) denote sea ice extent of the
MASIE observation, the OCNCPL run, and the OCNDYN run, respectively. The black, red, and blue lines in (b) denote sea ice
extent anomaly of the MASIE observation, the OCNCPL run, and the OCNDYN run, respectively. The red and blue lines in (c)600
denote the sea ice concentration RMSE of the OCNCPL run and the OCNDYN run, respectively. MASIE = Multisensor Analyzed
Sea Ice Extent; OSISAF = Ocean and Sea Ice Satellite Application Facility.
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Figure 5: Modeled and observed monthly mean sea ice concentration. The top, middle, and bottom panels show the July, August,
and September sea ice concentration, respectively. The left, middle, and right panels show sea ice concentration of the OCNCPL605
run, the OCNDYN run, and the OSISAF observations. OSISAF = Ocean and Sea Ice Satellite Application Facility.
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Figure 6: Time series of (a) total sea ice volume, (b) spatial mean sea ice thickness, and (c) the RMSE of sea ice thickness with
respect to the satellite-retrieved observations in 2012. The black, red, and blue lines in (a) denote total sea ice volume of the
PIOMAS data, the OCNCPL run, and the OCNDYN run, respectively. The black, red, and blue dots in (b) denote sea ice thickness610
of the CS2SMOS observations, the OCNCPL run, and the OCNDYN run, respectively. The black bar in (b) represents the
observational uncertainties of the CS2SMOS data. The red and blue masks in (c) denote sea ice thickness RMSE of the OCNCPL
run and the OCNDYN run with respect to the SMOS observations in thin ice (< 1 m) region (line), the Cryosat-2 observations
(circle), the CS2SMOS observations (triangle), respectively. Model grid points without available observations are not taken into
the sea ice thickness RMSE calculation. PIOMAS = Pan-Arctic Ice Ocean Modeling and Assimilation System; SMOS = Soil615
Moisture Ocean Salinity.
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Figure 7: Time series of sea ice thickness at three positions: (a) (75 °N, 150 °W), (b) (78 °N, 150 °W), and (c) (74 °N, 140 °W). The
red and blue lines denote sea ice thickness of the OCNCPL run and the OCNDYN run, respectively. The black solid and dashed
lines denote sea ice thickness observations of the BGEP ULSs, which were deployed in the summers of 2011 and 2012. The black620
lines of the BGEP ULS observations have been smoothed with the gray bar representing the observational uncertainties. BGEP =
Beaufort Gyre Exploration Project; ULS = upward-looking sonar.
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Figure 8: Monthly mean sea ice thickness. The top, middle, and bottom panels show the June, September, and December sea ice
thickness, respectively. The left, middle, and right panels show sea ice thickness of the OCNCPL run, the OCNDYN run, and the625
deviation between them.
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Figure 9: Time series of the RMSE of modeled SST with respect to the GMPE observations in summer of 2012. The red and blue
lines denote the SST RMSE of the OCNCPL run and the OCNDYN run, respectively. GMPE = Group for High-Resolution Sea
Surface Temperature Multi-Product Ensemble.630
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Figure 10: Modeled and observed monthly mean SST. Rows 1 to 3 show the July, August, and September SST, respectively.
Columns 1 to 4 show the SST of the GMPE observations, the OCNCPL run, the OCNDYN run, and the deviation between the
OCNCPL and OCNDYN runs, respectively. GMPE = Group for High-Resolution Sea Surface Temperature Multi-Product
Ensemble.635

Figure 11: July-August-September mean ocean temperature and meridional velocity section along 78 °N in Fram Strait. The top
and bottom panels show the ocean temperature and meridional velocity, respectively. The left, middle, and right panels show the
OCNCPL run, the OCNDYN run, and the deviation between them, respectively.

640
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Table 1: Monthly mean northward cross-section velocity (cm/s) and temperature (°C) averaged between 5°E and 8°40'E at
78°50'N in Fram Strait. A1 represents algorithm 1 that values are calculated from sea water with potential temperature higher
than 1°C. A2 represents algorithm 2 that values are calculated from sea water with potential temperature higher than -0.1°C. A3
represents algorithm 3 that values are calculated from sea water with depth shallower than 700 m. The observations are averaged645
between 1998 and 2003. WSCOBS = West Spitsbergen Current Observation.

July August September

Vmean Tmean Vmean Tmean Vmean Tmean

A1:

(T>1°C)

OCNCPL 3.94 3.56 4.03 3.66 4.03 4.02

OCNDYN 3.22 3.69 2.93 3.79 2.27 3.91

WSCOBS 6.26 2.76 6.98 2.90 7.36 3.02

A2:

(T>-0.1°C)

OCNCPL 3.53 2.30 3.32 2.35 3.24 2.54

OCNDYN 2.63 2.58 2.38 2.69 1.98 2.66

WSCOBS 5.82 2.35 6.39 2.44 6.69 2.51

A3:

(0-700 m)

OCNCPL 4.21 3.97 4.33 4.03 4.16 4.53

OCNDYN 3.87 4.36 3.53 4.54 2.55 4.65

WSCOBS 6.09 2.61 6.67 2.72 7.04 2.83
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